(EEAR CFS 1/2023) Utilizando os algarismos de 1 a 9, foram escritos números ímpares, de três algarismos distintos, de forma que nenhum deles termine com 1. A quantidade desses números é 

a) 224 b) 264 c) 280 d) 320


Solução: questão de matemática da EEAR (Escola de Especialistas da Aeronáutica) do Exame de Admissão ao CFS 1/2023. Prova aplicada no dia 05/06/2022.

Dado que os números não podem terminar em 1, então os números ímpares de três algarismos distintos que podem ser formados são aqueles terminados em 3, 5, 7 ou 9.  

>> Fixando o 3 ao final do número, nós teremos a seguinte estrutura:

__    __   ||3||

No primeiro dígito, como o algarismo 3 já está fixo no final, só temos (9-1) = 8 algarismos possíveis, já no segundo dígito, como dois algarismos já foram utilizados, temos  (8-1) = 7 algarismos possíveis.  Então, basta multiplicar 8 x 7: 

 8   ||3||  =  56 números possíveis.

Temos que repetir o mesmo racicínio para os números terminados em 5, depois em 7 e também em 9.

 8  x  7   ||3||  =  56 números possíveis.
 8  x  7   ||5||  =  56 números possíveis.
 8  x  7   ||7||  =  56 números possíveis.
 8  x  7   ||9||  =  56 números possíveis.

Finalmente, basta somar 56 + 56 + 56 + 56 = 4 x 56 = 224.

Alternativa correta é a letra a).

Aproveite e continue praticando com uma lista de questões anteriores da EEAR

Um forte abraço e bons estudos.