(ESA 2024) Considerando log 2 = t/2, assinale a alternativa que apresenta o valor de đ‘„, sabendo que:


a) đ‘„ =  
 t 
 2
+ 1

b) đ‘„ =  
 t 
 2
  - 1

c) đ‘„ =  
 t 
 3
+ 1

d) đ‘„ =  
 t 
 3
+ 2

e) đ‘„ =  
 t 
 3
  - 2

Solução: questĂŁo de matemĂĄtica da ESA (Escola de Sargentos das Armas) do Concurso de AdmissĂŁo 2023 aos Cursos de Formação e Graduação de Sargentos 2024 – 25 . Prova aplicada em 08/10/2023.

Nessa questĂŁo, vamos utilizar a seguinte propriedade dos logaritmos:

loga (b/c) = loga b - loga c

Obs:  nos logaritmos do enunciado, a base foi omitida, entĂŁo, consideramos que a base Ă© igual a 10.  Ou seja, log 2 Ă© o mesmo que log10 2.

Vamos desenvolver a soma dos logaritmos dados na expressĂŁo do enunciado:

x = log 2 - log3 + log 3 - log 4 + log 4 - log 5 + ..... + log 8 - log 9 + log 9 - log 10

NĂŁo Ă© necessĂĄrio escrever todos esses logaritmos, jĂĄ Ă© possĂ­vel perceber que

x = log 2 - log 10

x =  
 t 
 2
  - 1


Alternativa correta Ă© a letra b).

Uma outra forma de resolver essa questĂŁo Ă© utilizando a seguinte propriedade dos logaritmos

loga (b · c) = loga b + loga c


x = log [(2/3)·(3/4)·(4/5)·(5/6)·(6/7)·(7/8)·(8/9)·(9/10)]

x = log [(2.3.4.5.6.7.8.9)/(3.4.5.6.7.8.9.10)]

x = log [(2.3.4.5.6.7.8.9)/(3.4.5.6.7.8.9.10)]

x = log(2/10)

x = log 2 - log 10

x =  
 t 
 2
  - 1

Aproveite e continue praticando com uma lista de questĂ”es anteriores da ESA.

Um forte abraço e bons estudos.

2018-2025 © ExercĂ­cios Resolvidos - Todos os direitos reservados. PolĂ­tica de Privacidade.